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In this work we introduce a postprocessing filter (PostDOCK) that distinguishes true binding
ligand-protein complexes from docking artifacts (that are created by DOCK 4.0.1). PostDOCK
is a pattern recognition system that relies on (1) a database of complexes, (2) biochemical
descriptors of those complexes, and (3) machine learning tools. We use the protein databank
(PDB) as the structural database of complexes and create diverse training and validation sets
from it based on the “families of structurally similar proteins” (FSSP) hierarchy. For the
biochemical descriptors, we consider terms from the DOCK score, empirical scoring, and buried
solvent accessible surface area. For the machine-learners, we use a random forest classifier
and logistic regression. Our results were obtained on a test set of 44 structurally diverse protein
targets. Our highest performing descriptor combinations obtained ∼19-fold enrichment (39 of
44 binding complexes were correctly identified, while only allowing 2 of 44 decoy complexes),
and our best overall accuracy was 92%.

Introduction

Molecular docking calculations are a well-established
tool in drug discovery. Docking is used to screen large
databases of small molecules against a given target
receptor and to identify those that can reasonably be
expected to bind to the receptor. The core function of
all docking programs is to identify ligand poses (i.e.
orientations and conformations) that match the struc-
tural and chemical characteristics of the target receptor.
Typically, docking calculations are run on large sets of
small molecules (106-109 molecules or larger); thus,
execution speed is increased at the expense of accuracy.
The top ranking ligands are then considered for further
development.

The most accurate calculations of the free energy of
binding for a protein-ligand complex use explicit waters
in full molecular dynamics/Monte Carlo simulation.1-3

These calculations are still at least 6 orders of magni-
tude too slow to be used in large-scale screening of
putative ligands.4-7 Although docking does not include
explicit representations of solvent water molecules,
implicit solvation models, such as generalized Born
solvation, have been used successfully in docking simu-
lations,8 but the added computational cost of those
methods restricts them to much smaller datasets than
occur in high throughput screening. Faster docking
methods make further approximations to these mod-
els.9,10

Due to the compromises between accuracy and speed
that have to be made for large scale docking simulations,
it is common to refer to the binding value assigned to a
docked pose as a “score” rather than as free energy and
to refer to the simplified physics models used to arrive
at these scores as “scoring functions”. The most common
fast scoring functions used for screening large datasets

are: force field based scoring schemes11-14 in which the
nonbonded electrostatic and Lennard-Jones terms are
used from a molecular mechanics force field to estimate
intermolecular interactions (e.g., DOCK), knowledge-
based scoring schemes15,16 in which binding potentials
are derived from statistical analysis of cocrystallized
protein-ligand pairs (e.g., Pmf, DrugScore), and empiri-
cally derived scoring schemes17,18 which begin by as-
suming a chemically intuitive form for the descriptors
(e.g., hydrogen bonding and contact surface area) and
then fit coefficients to create a potential function (e.g.,
LUDI and ChemScore). These scoring functions are
useful singly or in consensus scoring.19 Bissantz et al.20

have shown that none of several popular scoring func-
tions is best for both hydrophilic (thymadine kinase) and
hydrophobic (estrogen receptor) targets. The functional
form of empirically derived scoring schemes can be
chosen to optimize computational speed and chemical
interpretability, but their predictive accuracy usually
does not necessarily extend beyond the target receptor
families on which they were trained.

In this paper, we describe the development of a new
approach to evaluating and ranking ligand-receptor
complexes. The goal is to improve the results obtained
by the fast, but inexact, scoring methods in docking by
adding a postprocessing filter (the “postDOCK” filter)
that can divide the output poses into binders and decoys.
Each postDOCK filter uses molecular descriptors to
describe the characteristics of the ligand-receptor
complex, and pattern recognition to separate out the
binding from the nonbinding ligands. The molecular
descriptors include ones similar to those used in existing
empirical scoring schemes, as well as novel descriptors.
We use a random forest classifier.21 Random forest is
an extension of the classification and regression tree
(CART) algorithm. CARTs have previously been used
in chemical applications,22 are nonparametric, and train
quickly, and their output is a readily interpretable tree.
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Table 1. Selected Examples of Protein-Ligands and Decoys
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Table I (Continued)
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To address the high dimensional space created by
using multiple descriptors, described below, we used
ensembles of learners and feature set selection tech-
niques. To provide broad applicability, postDOCK was
trained on 152 protein families23,24 that represent a
sequentially diverse set of protein targets. Using a test
set of 44 structurally diverse protein targets, the post-
DOCK filter exhibits a 19-fold enrichment for identify-
ing correctly docked vs decoy complexes over random
filtering.

Computational Methods
Construction of the Database of Binders and Decoys.

To construct the binding complexes for the data sets, all
protein-ligand complexes from the protein data bank (PDB)
were scanned. We eliminated ligands that had missing heavy
atom coordinates, were common crystallographic solvents, that
were monomeric sugars containing less than 10 atoms, that
had more than 100 heavy atoms, or that had greater than 30
rotatable bonds. Missing side chains and hydrogen atoms of
the proteins were added to all complexes in the final data sets
using Sybyl. Ligands were atom typed and hydrogens added
by hand. To remove steric clashes, the position of the ligand
in the receptor site was optimized using 100 steps of the
simplex optimizer in DOCK4.0.1.25 Removing steric clashes is
also important because we do not want steric clashes to be
associated with true binding poses, even if they are found
frequently in crystallographic poses.

To determine the performance of pattern recognition algo-
rithms on the relevant problem requires proper selection of
the training set. Since the postDOCK filter is intended as a
general docking filter, we constructed the training and test
sets using the broadest range of protein targets available. The
152 training complexes and 44 test complexes were selected
from this set of PDB complexes using the Fold classification
based on Structure-Structure alignment of Proteins (FSSP)
fold tree23,24 to achieve diversity across all known proteins. The
training set was a sequentially diverse set generated by
selecting one protein target from each cluster in the lowest
tier of the FSSP hierarchy. From the ∼2400 clusters in FSSP,
most of which had no ligands, there were a total of 152 ligand-
protein complexes for the training set (Table S1). The valida-
tion set was drawn from the FSSP fold tree’s structurally
diverse top tier. The top tier of FSSP has ∼600 structurally
diverse protein folds. If we limit ourselves to no more than
one protein-ligand complex from each fold that is not already
used in the training set we are left with 44 complexes for the
validation set (Table S2). Some selected examples of protein
targets, their true binders, and the decoy used are provided
in Table 1.

We also created training and test sets of “decoy” ligands
from the other ligands in the PDB. Separate decoys were
generated for each protein in the training and test sets. The
DOCKing process began with a DOCK sphere-set generated
using the coordinates of the native ligand to identify the
binding site. All ligands were DOCKed into each protein target
(500 orientations with a distance tolerance of 0.25 Å, a distance
minimum of 2.0 Å, and a node matching minimum of 3 and
maximum of 10 nodes). Flexible docking was used with
simultaneous search of torsions and default flexible param-
eters. The protein and ligand were assigned AMBER all atom

charges and Gasteiger-Marsili partial charges respectively by
Sybyl, followed by simplex optimization with DOCK’s default
force field parameters. Those ligands that were successfully
DOCKed and had a daylight fingerprint Tanimoto coefficient31

of <0.5 with the native binder were candidate decoys. From
this pool, the decoy ligand was selected at random. At this
Tanimoto threshold we hoped to reduce the false negative rate
in the decoy dataset no more frequently than a binder is found
through random screening. Although not the focus of their
paper, Martin et al.32 show that the probability of compounds
being active steadily decreases away from an active compound.
For the MAO inhibitors, 0.5 is the lowest Tanimito distance
shown, and it appears to have a slightly higher probability of
being active than the average in the set. Table 1 shows selected
pairs of binders and decoys. The diversity of the ligands with
respect to hydrogen bonding acceptors and donors and CLogP33

for the training and test sets are shown in Figures 1 and 2.
Structural Descriptors. Structural descriptors were used

to characterize the protein-ligand complexes. First the struc-
tures were minimized using the DOCK total score to remove
any steric clashes from both the binders and decoys. This
ensured that only valid DOCK poses were evaluated. The set
of feature descriptors used to characterize the ligand-protein
complexes are summarized in Table 2. The DOCK total score
provided the nonbonded van der Waals and electrostatic
interaction force field terms, but the other descriptors were
calculated in a postprocessing step. These included descriptors
from our in-house implementation of the Eldridge ChemScore
function.18 The Eldridge function consists of terms for hydrogen
bonding, metal bonding, lipophilicity, and the number of bonds
whose rotation is blocked by the presence of the receptor. In
addition, we calculated a series of buried solvent accessible
surface area (SASA) descriptors, using SURF34 with a 1.4 Å
probe, as a computationally inexpensive way of gauging
solvation effects. We then calculated the surface attributable
to each of a set of atom types, in an atomic solvation
parameter35 inspired approach, and used each as a separate
descriptor. The atom types were based on SYBYL MOL2 atom
types (see Table S3). As there is evidence that more than one
length scale is needed to describe the self-association of
hydrogen bonding water in aqueous solvation,6 we also created
a novel descriptor called SASA-L. Our goal with this descriptor
was to capture the clathrate ring length scale effects of the
hydrogen bonding-associated network, so we selected a 6 Å
probe (as compared to 1.4 Å for a water-sized SASA probe) to
calculate the SASA-L. Again we calculated how much surface
was attributable to each surface atom type (see Table S3) to
generate a set of descriptors. Finally, because trees consider
each descriptor individually, rather than in a linear combina-
tion, decision trees can benefit from including totals of our
DOCK, SASA, SASA-L, and ChemScore descriptors as well as
the 28 component descriptors (for a total of 32 descriptors
considered). The correlation matrix of the selected descriptor
set is provided in the Supporting Information.

The Pattern Recognition Algorithm. We used R’s pack-
age of random forest (called randomForest).21 Important
individual features were selected by variable importance,21 and
subsets were selected from high performing individual fea-
tures. To select which feature sets to use, we began with the
the variables selected by random forest’s variable selection
procedure. From the top 20 of these all pairs, triplets and
quartets were assessed, and those with the highest perfor-
mance are noted. For a single learner (either tree or linear

Table 2. Descriptors Used

name of descriptor type of descriptors number of descriptors

DOCK DOCK direct interaction: vdw and electrostatics 2+1a

SASA solvent accessible surface area (1.4 Å probe) calculated by SURF 11+1a

SASA-L solvent accessible surface area (6 Å probe) calculated by SURF 11+1a

ChemScore hydrogen bonding, metal binding, lipophilic, rotatable bonds 4+1a

Total 32
a The additional (+1) descriptor is from treating the sum of the descriptors as an additional descriptor. This was included because

decision trees do not automatically detect linear combinations.
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model), reducing the number of descriptors improves perfor-
mance because the relatively small number of complexes in
the PDB-based training set is spread over fewer dimensions.36-38

Finally, the most important and appealing aspect of using
fewer descriptors is to produce a simpler, more physically
interpretable model.

Once optimal descriptor subsets were determined, we
developed linear models to complement the ensemble of
decision trees for these sets. Our linear models are logistic
regression (LR) 39,40 with the glm package of R.41

Creating a ROC Curve. To calculate the performance of
our models over the full range of specificity and sensitivity,
we have calculated receiver operator characteristic (ROC)
curves.42 To generate an ROC curve, we adjust the threshold
at which the ensemble of learners determines that a test
example is a binder (or decoy). At one extreme, we begin at
the bottom, left corner where the threshold is set so high that
all the examples are declared decoys (see Figure 1). As the
threshold is decreased incrementally, more examples are
declared binders. On the ROC curve a true binder being
declared a binder moves the curve up, and a decoy being
declared a binder moves the curve to the right. In a perfect
ROC curve all of the binders are found first and the curve goes
to the top, left corner. As the threshold is increased, all the

examples are declared binders and the curve goes from the
bottom, left to the top, right corner.

Results and Discussion

Searching for Optimal Descriptor Subsets. To
capture more of the essential biochemistry of complex
stability, we considered a large number of descriptors
(see Table 2). With 32 descriptors, there are 232 - 1 (or

Table 3. Test Set Performance of Random Forest (each row shows the performance for a subset when used to build an ensemble of
decision trees)

DOCKa SASAa SASA-La ChemScorea

Percent Binders
correctly identified

at best performanceb

Percent decoys
incorrectly identified
at best performanceb

Enrichment identified
at 2 FP

allc 86.4 2.3 18.5
es Total and O_BYLe hbf 86.4 2.3 19

Total and C_BYL hb and lipo 86.4 4.5 19
Total Total hb and rot 84.1 4.5 18.5
es Total and C_ALI hb 84.1 4.5 18.5
Total Total C_ALI hb 84.1 2.3 18.5
Total Total hb 79.5 2.3 18
Total C_ALI hb 81.8 4.5 18

Total and C_ARO hb 79.5 2.3 17.5
Total Total hb 81.8 4.5 18

Total hb 75.0 2.3 16.5
O_BYL hb 68.2 4.5 15
C_ALI hb 72.7 6.81 14.5

Total 84.1 40.9 7
Total 50.0 13.6 7
C_ALI 47.7 18.2 7

es 27.3 6.8 5
Total 29.5 6.8 3
vdW 45.4 27.3 3.5
a The leftmost four columns describe which descriptors are in each subset. b 50% threshold is the max performance of the ROC curve.

The error bar for these columns if about 3.5%. c “all” means that each component was included. d “Total” means the summed descriptor
values. e “C_BYL”, “O_BYL”, and “C_ALI” are components of the SASA. f “hb”, “lipo”, and “rot” are components of ChemScore.

Figure 1. The test set’s hydrophobic (CLogp) and hydrophilic
(H-bond donors plus acceptors, calculated by Daylight) proper-
ties.

Figure 2. The training set’s hydrophobic (CLogp) and hydro-
philic (H-bond donors plus acceptors, calculated by Daylight)
properties.

Figure 3. A schematic set of ROC curves showing perfect
performance, high performance, low performance, and random
performance.
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4.29 × 109) possible descriptor subsets. To reduce the
choice of subsets to a computationally tractable problem,
we applied feature set selection methods. This data set
is fairly straightforward so forward feature set selection
and variable selection all identify very similar descriptor
subsets as promising. Selected high-performing subsets
are shown in Table 3. This table shows the number of
binders and decoys correctly and incorrectly identified
at the best performing point on the ROC curve (i.e.,
closest to the top, left corner). We expect statistical
fluctuations on the order of sqrt((N)p(1 - p)) ∼ (9 for
the enrichment factor in the top performing sets. All
top subsets include ChemScore hydrogen bonding (H-
bond) and a buried surface area (SASA) term. Many of
these subsets also include terms from the DOCK force-
field score and the large sphere SASA-L.

Performance of Descriptor Subsets. To evaluate
the full performance of the descriptor subsets on our
test set, we examined each over its entire range of
sensitivity and specificity using ROC curves (see Figures
3 and 4). We see that the lowest performing subsets
plotted in Figure 4 are composed of single descriptors;
conversely, all of the top performing feature sets rely
on feature synergies. Table 3 shows the midpoint on the
ROC curve for each descriptor subset. To estimate
enrichment performance, we also note the number of
true positives discovered when 2 (of 44) false positives
are allowed for each descriptor subset. We note that
although the existing scoring schemes DOCK and

ChemScore, which are each summarized in a single
descriptor, eliminate many decoys (5× and 7× enrich-
ment are seen, respectively), by adding additional
descriptors we can obtain up to 19× enrichment (Table
3). In screening, the goal is enrichment, so while getting
the binding complexes correct is important, it is critical
to correctly identify (and then discard) as many decoys

Table 4. Test Set Performance from Selected Logistic Regression Subsets

DOCKa SASAa ChemScorea

percent of binders
correctly identified

at best performanceb

percent of decoys
incorrectly identified
at best performanceb

enrichment factor
at 5% FP

Total Total Hb 84.1 6.8 16.5
Total Hb 70.5 2.3 15.5

Total Hb 68.2 2.3 15
Total Total 63.6 13.6 9

Hb 70.5 6.8 13.5
Total 63.6 13.6 9

Total 61.3 11.3 10.5
a The four left-most columns describe which descriptors are in each subset. b The error bar for this column is about 7.5%.

Figure 4. Full ROC curves for selected descriptor subsets using a random forest learner (see also Table 3). Overall performance
is determined by proximity to the top, left corner. The single descriptor subsets make up the lowest performers. Selected points
are presented numerically in Table 3. Figure 5 gives a detailed view of the high performing region.

Figure 5. Detail of the high-performing region of Figure 4
(top, left). All the best subsets contain SASATOTAL and
ChemScoreH-BOND, and all the lowest performing subsets
contain only a single descriptor. Those without a subscript are
using all the descriptor from that source (Table 2). (This figure
uses the same line colors and symbols that are used in Figure
4.)
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as possible. In this case, enrichment factor is the best
metric to evaluate. Note that ROC curves are asymp-
totically equivalent to enrichment curves (true positives
vs all positives) when the number of false positives
becomes very large (e.g., when screening a large, diverse
library for hits). For other applications (e.g., obtaining
docking poses), a balanced consideration of binding and
nonbinding interactions may be desired, and overall

performance is the appropriate metric. One of our key
results is to identify the best performing descriptor set-
(s) for the postDOCK filter for each of these two
applications. Apparently, synergy between hydrophobic
(either SASAtotal or ChemScorelipophilic) and hydrophilic
(as
ChemScoreH-bonds) descriptors is essential for both
enrichment and overall performance: these descriptors
appear in all our best subsets (Figures 3 and 4, and
Table 3).

Enrichment Results. The ROC curve’s initial slope
(the enrichment factor) is the relevant performance
metric in virtual screening where the goal is to minimize
the number of false positives for each true positive
discovered. Random screening has an enrichment factor
of 1-fold; useful procedures have higher enrichment
factors. Existing single descriptor scoring schemes
DOCK and ChemScore each have 5-fold or 7-fold
enrichments. The highest enrichment is found in sub-
sets that contain the features SASATotal and
ChemScoreH-bond, which is ∼20-fold enrichment with 5%
false positives. With logistic regression the subset of
(DOCKtotal + buried SASAtotal, + ChemScoreH-bond) has
an enrichment factor of ∼16-fold.

Overall Performance. For applications where elimi-
nating decoys and discovering binders are of equal
importance (for example, lead optimization and pose
generation), the best overall performance is the closest
that the ROC curve gets to the top, left corner; that is

Table 5. Coefficients from Selected Logistic Regression Modelsa

models intercept ChemScoreH-bond SASAtotal DOCKtotal

SASAtotal + ChemScoreH-bond -2.64 ( 0.37 -0.314 ( 0.043 -0.00406 ( 0.00097
DOCKtotal + ChemScoreH-bond -0.02 ( 0.37 -0.380 ( 0.048 +0.066 ( 0.016
DOCKtotal + SASAtotal
+ ChemScoreH-bond

-1.29 ( 0.46 -0.367 ( 0.049 -0.0053 ( 0.0011 +0.076 ( 0.017

DOCKtotal +0.10 ( 0.26 +0.0036 ( 0.0086
SASAtotal -1.66 ( 0.29 -0.00541 ( 0.00090
ChemScoreH-bond -1.44 ( 0.20 -0.316 ( 0.041

a There is one subset per row and one column for each descriptor. Empty cells indicate that the descriptor is not included in that
subset. The “std dev” are as reported from R’s glm package.

Figure 6. Full ROC curves for selected descriptor subsets using logistic regression. Descriptor sets with a subscript are for a
single descriptor. Overall performance is measured by proximity to the top, left corner. The best subset contains SASATOTAL and
ChemScoreH-BOND. Lowest performing subsets are composed of a single descriptor. (Table 2). Selected points from this figure are
presented numerically in Table 4.

Figure 7. Detail of high performers from Figure 6 and using
the same colors and symbols. Overall performance is by
proximity to the top, left corner. The best subset contains
SASAtotal and CSCOREH-bond. Lowest performing subsets are
composed of a single descriptor.
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when (precent true positives found) - (percent false
positives allowed) is at its highest. The overall perfor-
mance of ChemScore and DOCK alone are finding 37/
44 true binders while allowing 18/44 decoys and finding
13/44 true binders while allowing 3/44 decoys, respec-
tively. By contrast, the highest performance found in
any subset is finding 38/44 true binders while only
allowing 2/44 decoys. To estimate the effects stochastic
elements of the random forest we grew 300 random
forests. In these 300 the mean enrichment was 18.96
and 25th, 50th (median), and 75th percentiles were 18.5,
19, and 19.5, respectively. The best performance is
(percentage of binders found) - (percentage of decoys
allowed). The mean best performance is 83% and the
25th, 50th, 75th percentiles were 81.8, 81.8, 84.1%,
respectively.

Decoys are Easier to Identify Than Binders.
Traditional scoring functions focus on correctly predict-
ing how well a ligand will bind. Enrichment emphasizes

eliminating decoys. Almost all the descriptor combina-
tions we consider find eliminating decoys easier than
finding binders. For example, the DOCK total force field
score gets most of its enrichment from eliminating
decoys (from Table 3: DOCKtotal identifies 13 of 44
binders while eliminating 41 of 44 decoys), rather than
positively identifying those that do bind. Indeed, for
many descriptor subsets, the percentage of decoys
correctly identified is roughly 25% higher than the
percentage of binders correctly identified at the mid-
point on the ROC curve (Figures 3 and 4). Another
manifestation of this is that most of the overall perfor-
mance maxima occurred with fewer false positives than
false negatives. Logistic regression also finds decoys
easier to detect than binders (Figures 5 and 6).

Logistic Regression. We can connect this work with
other empirical scoring functions by making a linear
model of our descriptors. Visual inspection of Figure 8
suggests that a linear decision surface would be effective
for this training set. We use logistic regression (LR) as
our linear method.40 The performance of the descriptors
in this linear model is a little lower than that of the
random forest model (see Table 4). Similar features and
feature subsets are important for the two techniques.
In particular, SASAtotal, ChemScoreH-bond, and DOCKtotal
are part of the high performing descriptor subset, and
once again the single descriptors still greatly under-
perform the feature combinations; thus, synergies be-
tween descriptors are still important. Note the case
ChemScoreH-bond which is the best individual feature
and is better on its own than the DOCKtotal and
SASAtotal subset. Together they still form the best triplet
and subset we found.

The coefficients with their error bars for the LR
models are shown in Table 5. For all descriptors, more
negative values indicate stronger interactions: those
descriptors with positive coefficients are associated
with improved binding. (DOCKtotal + SASAtotal +
ChemScoreH-bond) is the best performing subset. LR
performs better on descriptor subsets than all the
features because unlike the ensemble of trees it is
susceptible to noisy and/or low information features
included in the entire set.

A Single Decision Tree Example. One advantage
of using subsets of descriptors is their ease of physical
interpretation. To illustrate this point we show a simple
example using only two descriptors. Figure 8 shows the
recursive partitioning of the training set using the
top performing descriptor pair: SASAtotal and
ChemScoreH-bond. Again for simplicity, Figure 8 shows
results for a single decision tree instead of an ensemble
of trees. Each partition is labeled in the sequential order
in which it is derived. Partition 1 is the first partition
dividing binders and nonbinders, and this partition
(ChemScoreH-bond < ∼-7 Kcal) has a majority of binders.
Partition 2 divides the remaining compounds, and again
complexes scoring in this partition (ChemScore H-bond
> ∼-7 kcal but SASAtotal < ∼-500 Å2) are considered
binders. Partition 3 divides the remainder, and all
compounds scoring in this partition (ChemScoreH-bond
> ∼4.8 and SASAtotal > ∼-500 Å2) are considered
nonbinders. Similarly, compounds scoring in partitions
4 and 5 are binders and nonbinders, respectively. It is
physically reasonable that ligands that have the highest

Figure 8. The points show the values of ChemScoreH-bond and
total SASAtotal descriptors for the test set for both binders and
decoys. The blue lines show the partitioning of the space as
given by a single tree on the training set into rectangular
regions which are labeled 1 through 5. The regions 1, 2, and
4 contain a majority of binders, and regions 3 and 5 contain a
majority of decoys. Eight points (discussed in the text) are
labeled by the pdb id of the target, four targets with a binder
and decoy each. The black type labels and black diamond
points are the binding examples and the red code labels are
the decoys. The poses and structures for these points are
shown in Figures 9-16.

Figure 9. The decoy gdn (from 1hnc) docked into HIV
protease (1hpx) falls in region 3 of Figure 8. It does not bury
enough surface area or have enough H-bonding to be mistaken
for a binder.
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number of hydrogen bonds and/or most buried surface
area are partitioned into binding regions.

To show how this simple descriptor set performs on
particular examples, we plotted and labeled the com-
pounds from the test set onto this partitioning scheme
(see Figure 8). Inaccurate predictions occur when a
decoy complex buries a large amount of surface area or
makes many hydrogen bonds. Conversely, inaccurate
predictions also occur when some true binders do not
bury surface area or have enough hydrogen bonds in
this simple partitioning to be labeled binders. Although
this learner uses only two descriptors, it does a fairly
good job of correctly partitioning the test set. With more
descriptors, we can better distinguish binders from
nonbinders, such as in our top-performing descriptor set
(SASA-Lcarbon + SASAtotal + ChemScoreH-bond).

We consider four specific cases from the test set in
the example from Figure 8. Two of them are treated
correctly, and the other two either misclassify a decoy
or a binder. In our first example, HIV-1 protease (PDB
entry 1hpx), both the binder and decoy are properly
scored. The crystallographic ligand has a large amount
of buried surface area, placing it clearly in a binding

Figure 10. The binding mode of KNI in HIV protease (1hpx) as found in the pdb. It has strong enough interactions to be correctly
identified as a binder and falls in region 1 of Figure 8.

Figure 11. Thrombin (1uvu) with decoy (1okl_mns) ligand
DOCKed in. It is correctly identified as a nonbinder and falls
in region 3 of Figure 8.

Figure 12. This is thrombin with binder from the pdb. It is
correctly identified as a binder and falls in region 4 of Figure
8.

Figure 13. The decoy pcp (1a96) docked into cytidine deami-
nase (1ctt). This decoy has enough buried surface area and
H-bonding to fall in region 4, a majority binding region, and
therefore is a false positive in our single tree, two-descriptor
learner.

Figure 14. This is native ligand (dhz) docked into cytidine
deaminase (1ctt). It has enough interactions to be correctly
considered a binder and can be found in region 1 of Figure 8.

Figure 15. The decoy ligand (phb) in carbonic anhydrase
(1cnw). Because of its lack of interactions it falls in region 3
of Figure 8 and is correctly excluded as a decoy by a single
tree learner.
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region. The HIV-1 protease decoy is clearly in the
nonbinding partition 3, due to both the lower number
of hydrogen bonds and the smaller amount of buried
surface area (see Figures 9 and 10). Thrombin (PDB
entry 1uvu) is also classified correctly. Again the
thrombin PDB complex has much greater H-bonding
and buried surface area relative to the decoy (see
Figures 11 and 12). The PDB structure of carbonic
anhydrase (PDB entry 1cnw) is incorrectly perceived to
be a decoy. This is because the H-bonding and SASA
terms miss the metal binding interaction that is critical
for this target (see Figures 13 and 14). When metal
binding is included, this complex is correctly recognized.
The cytidine deaminase binder is correctly recognized
as such, but the decoy has enough H-bonding that it is
predicted to be a binder (see Figures 15 and 16).
Inclusion of the DOCK total allows the correct identi-
fication of this decoy complex. Using many descriptors
and complex pattern recognition methods achieves
higher performance; having fairly good performance
from a simple model achieves interpretability.

Conclusion

In the virtual screening of large libraries, the vast
majority of compounds are of little interest, and limited
computation time can be spent on each compound. The
task is to eliminate as many nonbinders as possible
while retaining the binders. The approach we developed
combines fast docking (frozen protein, no explicit sol-
vent) with a pattern recognition algorithm to create a
set of postDOCK filters that can be used to triage the
implausible binding poses, leaving a greatly reduced set
of compounds for further consideration. For almost all
descriptor sets, decoys were much easier to detect than
binders, and therefore high enrichments were possible
without having high accuracy on binders. Existing
scoring schemes (DOCK and ChemScore) eliminate
many decoys (with 5-fold and 7-fold enrichments). Our
best model (constructed using all of our descriptors with
random forest learner) has a 19-fold enrichment (recov-
ering 39 of 44 binders while allowing only 2 of 44 of the
decoys).

We used machine learning techniques to systemati-
cally improve performance by testing new descriptors
in combination with existing descriptors. Our results
clearly show that the DOCK force field could benefit

from buried surface area and H-bonding terms. Further
improvements in performance will come from better
descriptors. One source of improvement could come from
using partial charge calculation methods that are more
accurate than the Gasteiger-Marsili procedure that we
used and replacing the distance dependent dielectric
with a better implicit solvation method. In this paper,
we have tried large sphere SASA (which to our knowl-
edge is a novel descriptor in characterizing protein-
ligand complexes) in addition to the more traditional
descriptors of protein-ligand complexes. Although it does
not contribute to enrichment, the large sphere buried
surface area descriptor may improve performance in the
mid part of the ROC curve. This effect is not statistically
significant and needs to be repeated before we can say
that we are seeing aqueous self-association effects.

Because our examples were trained and tested on a
diverse set of proteins, we expect the postDOCK filters
we listed to be generally applicable to a variety of
targets when there is no other a priori information. For
cases where there is additional information, such as
binding data to a homologous protein, the methods
described in this paper could be used to train a dataset
specific to the target of interest. Additional descriptors
may be added to further tune the postDOCK filter to
that target, such as adding metal binding descriptors
when the target is a zinc binding protein complex (as
in our carbonic anhydrase example). Similarly, this
methodology can be applied to tune target specific
postDOCK filters using binding assay data.
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